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Abstract

Piloting a rotorcraft is typically a high gain task, and under adverse conditions the workload
may increase to the extent that the pilot is not able to achieve all goals simultaneously. Increased
exceedances of operating limits may occur as a result of this high workload. The goal of this research
has been to implement a system in piloted simulations which reduces workload and helps pilots to
avoid aircraft limits. The system uses neural networks to predict near future limit exceedances,
and alerts pilots to these impending exceedances through tactile cues and visual cues on the head-
up-display. The system was demonstrated in piloted simulations of the UH-60A and OH-58D and
was found to reduce limit exceedances and pilot workload. In these experiments, tactile cues alone
generally performed better than visual cues alone, but the combination of visual and tactile cues
generally performed best. Pilot comments and handling qualities ratings of the system were very
favorable.

1 Introduction

Piloting an air vehicle under normal conditions is typically a high workload task, and this is
particularly true for rotorcraft. In conditions as adverse weather or operation in an area of enemy
threats, the pilot's workload may be increased to the extent that he cannot adequately monitor and
exercise control to avoid limit exceedances. The consequences of these exceedances are impaired
ight safety and shortened equipment lifetimes.

A study conducted by Jeremy Howitt at the Defence Research Agency showed force feedback
cueing to be bene�cial for reducing limit exceedances.[1] This study used a \novel heave-axis au-
tomatic ight control system (AFCS) mode that blends between collective blade pitch command
(�0), torque command (Qe) and rotorspeed command (
r) as a function of collective lever position
(�c)".[1] At high collective input positions, collective position commanded torque and a soft-stop
(force feedback) on the collective stick marked the continuous torque limit. The use of this cue was
shown to reduce limit exceedance, reduce task time, and improve handling qualities.
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Other research has shown that force feedback cueing is superior to other types of cueing to alert
a pilot to limit exceedances. The HelMEE II (Helicopter Maneuver Envelope Expansion) study
conducted by the Army Aeroightdynamics Directorate (AFDD) compared the bene�ts of collective
stick force feedback, aural tones, voice warnings, and visual/head-up-display (HUD) information as
limit cues, while performing an air-to-air task and a turning auto-rotation task. The statistical data
and pilot comments from those experiments strongly supported the use of control force feedback,
complemented by either a visual or aural con�rmation of the limit exceedance. A key �nding of the
HelMEE II studies that led to the current work was that if measured values of the states related to
limits were used to drive visual, aural, or tactile cues, the dynamic nature of these states and limits
was such that warnings came too late to prevent exceedances. The results indicated the need to
predict near-future limit exceedances and to use the predictions rather than the current observables
to drive limit cues.

The authors chose to attempt using polynomial neural networks to provide the indicated pre-
dictions of near-future limit exceedances. Under a Phase I SBIR contract, Barron Associates,
Inc. (BAI) demonstrated the feasibility of using polynomial neural networks (PNNs) for this
application.[2] Feasibility was shown principally by demonstrating that representative critical vari-
ables could be accurately modeled by PNNs using simulation or ight data. The quantities examined
in the Phase I e�ort were main rotor torque, main rotor angular speed, normal load factor, lateral
velocity, and main rotor blade bending moment (apping axis).

In Phase II of this SBIR program, Barron Associates worked with Matthew Whalley of the
AFDD to implement a neural network limit avoidance system for rotorcraft (nnLASR). The system
uses polynomial neural networks to predict future rotorcraft operating parameters on the basis of
pilot commands and system observables and provides the pilot with information regarding future
limit exceedances based on these predictions. Information is primarily provided to the pilot through
tactile feedback on the various inceptors, with a secondary cue on the head-up-display (HUD) for
con�rmation. The e�ectiveness of the system for reducing main rotor torque exceedances during a
bobup task was demonstrated in the HelMEE IV experiments, the results of which are reported in
[3]. These experiments were performed in the Vertical Motion Simulator (VMS) facility at NASA
Ames using a UH-60A model. Subsequent �xed-based piloted simulation experiments of the OH-
58D demonstrated cueing over a range of maneuvers using a slightly modi�ed cueing approach.
This modi�ed cueing approach was successfully applied to multiple maneuvers and multiple limits
for the UH-60A during the HelMEE V experiments (which also used the moving base VMS facility).
These pilot-in-the-loop demonstrations represented major steps toward transitioning the nnLASR
technology to production aircraft.

This paper discusses the general architecture of the cueing systems, the speci�c implementations
for the UH-60A and OH-58D simulators, and the results of piloted simulation experiments of both
helicopters.

2 PNNs for Limit Prediction

2.1 Considerations for Creating Synthesis Databases

To create PNN models that perform well for situations not encountered during network synthesis,
the databases used for model synthesis must be carefully constructed. Nonlinear models perform
best when interrogated within the synthesis data range, so it is important that synthesis data

Barron Associates, Inc. 2
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encompass the range of ight conditions and maneuvers on which the model will be evaluated.
Because of the high dimensional spaces involved, analytically determining regions of space populated
by the synthesis data can be a di�cult task. The authors have employed a multi-dimensional
clustering analysis to screen evaluation data in some cases, but, because of the limitations of
such approaches, it is important to use knowledge of ight regimes seen in synthesis to determine
appropriate interrogation regimes.

The authors have also found it important to use synthesis data that capture the dynamics of
multiple pilots. In training networks to predict limit exceedances for a single type of maneuver, the
authors found that networks synthesized using data for a single pilot would perform well on unseen
maneuvers for the same pilot but not for maneuvers performed by other pilots. This suggests that
PNNs modeled the behavior of the speci�c pilot (or combined pilot-vehicle system) rather than
just the aircraft dynamics. This behavior is undesirable if the cueing system is to be evaluated by
multiple pilots.

2.2 PNN Architectures

Two distinct PNN architectures have been used in nnLASR implementations. The �rst, hereafter
referred to as the \inverse architecture", was used for main rotor torque cueing in the HelMEE IV
experiments. Using the inverse modeling approach to torque cueing, a PNN was synthesized to
estimate the current stick position using the current rotorcraft states and the true value of future
torque as inputs. When the resulting PNN was implemented in the cueing system, the value of
the torque limit was used in place of true future torque input. The intention was for the PNN
to compute the current inceptor position that would cause torque to be precisely at its limit one
prediction horizon in the future. Fig. 2.1 shows the inverse PNN con�gurations used in model
synthesis and in the cueing system implementation, respectively.

PNN 
Model

Estimate of TRUE
Current Stick Position

Current Rotorcraft States

TRUE FUTURE TORQUE

Configuration Used for Synthesis (and Evaluation)

PNN 
Model

Estimate of Current Stick 
Position to Reach Precise 
Torque Limit ∆t Sec. in 
Future

Current Rotorcraft States

 TORQUE LIMIT

Configuration Used for Cueing

Figure 2.1: Synthesis of Inverse Models vs. Use in Collective Stick Cueing System

The inverse architecture is attractive because it explicitly computes a \soft-stop" location that
can be applied to the collective stick. However, some problems do exist with this architecture;

Barron Associates, Inc. 3



AIAA Atmospheric Flight Mechanics Conference

Draft

Piloted Simulation Evaluation of a Neural Network

Limit Avoidance System for Rotorcraft

among these are the arbitrary pairing of current vehicle states with a future torque equal to the
limit. This combination of inputs may not be realizable for the physical system, and PNN behavior
for these input sets may be unpredictable. Also, in multi-axis maneuvers, multiple inceptors may
simultaneously inuence a limit of interest. (There may be not be a unique set of inceptor positions
that causes the limit of interest to be reached, and the PNN cannot �nd a unique solution if such
a solution does not exist.) An additional di�culty exists in making o�-line evaluations of inverse
network performance. The \soft-stop" location estimated by the inverse network is not a parameter
of the physical system so the truth value cannot be determined. In this case, estimation error for
the network in the cueing con�guration cannot be determined.

The authors believe an alternate cueing con�guration, referred to here as the forward architec-
ture, is more appropriate for multi-axis tasks, and this structure was used in piloted simulation
experiments involving multi-axis maneuvering. In the forward architecture, the future value of the
parameter of interest is estimated using current (and, in some cases, prior) observables. Fig. 2.2
shows this architecture. A drawback to this approach is that an additional step is required to
compute an appropriate inceptor limit position based on the network output.

PNN 
Model

Estimate of 
Future 
Torque

Current 
Rotorcraft 

Observables

Figure 2.2: Forward PNN Con�guration Used for Synthesis and Cueing

2.3 Prediction Horizon

The prediction horizon used for the PNNs is an important parameter that a�ects the performance
of both the PNN and the cueing system with a pilot in the loop. In selecting prediction horizons,
the authors have used several criteria with the goal of making a reasonable assessment of what
horizon(s) will yield the best closed-loop cueing system performance. Ultimately, however, pilot-
in-the-loop testing is required to conclusively determine the best prediction horizon(s).

One criterion considered in the selection of prediction horizons has been the linear correlation
between the inceptor position and limits of interest. Prior to the HelMEE V experiments, linear
correlations between current inceptor position and the limit variable n samples in the future were
computed for all integer values of n from zero to 60, where each integers corresponds to a 23 ms
increment. Fig. 2.3 shows the correlations between torque and collective position plotted against
the time shift, n, with each curve representing a separate maneuver. (The maneuvers shown in this
�gure are non-bobup maneuvers recorded in the VMS facility during the HelMEE IV experiments.)

Fig. 2.3 shows a clear trend across maneuvers, with maximum linear correlation for the maneu-
vers occurring at an average o�set of 16 samples. This suggests that a horizon of approximately 16
samples has some physical signi�cance in the system and would be a good choice for a prediction
horizon, excluding human factors considerations. Linear correlations were investigated for all limits
explored in the HelMEE V experiments, and similar trends were found for other pairs of inceptor
inputs and limits.1

1Investigation of linear correlations also supported the use of a damping cue to limit inceptor rate rather than
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Figure 2.3: Linear Correlations of Torque to Collective Inceptor

A second aspect considered in the selection of prediction horizons was the performance of
PNNs for various horizons. Even when the linear correlations between inceptor position (or rate)
and the variable being limited show a de�nitive maximum at some horizon, the performance of the
nonlinear PNN is not guaranteed to be best at this horizon. PNN performance is an important
component that inuences overall system performance and should be considered when selecting a
prediction horizon. PNN performance is not, however, the sole factor inuencing overall system
performance, and it has been found that the closed-loop system performance is sometimes improved
by increasing the prediction horizon even at the expense of degraded PNN performance. Again, this
result emphasizes the importance of performing pilot-in-the-loop evaluations of the cueing system
and not relying entirely on o�-line evaluation.

2.4 Mapping PNN Output into Cueing Force

Types of Cues Used

The UH-60A and OH-58D piloted simulation experiments both used a breakout and gradient cue
for main rotor torque.2 Fig. 2.4 shows the collective stick feedback force as a function of inceptor
position with respect to the moving limit. Note that the breakout was not a pure step force, but
was a 26.7 lb./in. gradient. This necessitated a slight correction in the force calculation to ensure
that the stick would overcome the friction force and return precisely to the limit position when the

inceptor position for hub moment cueing in UH-60A experiments. It was found that little or no linear correlation

exists between cyclic inceptor position and hub moment for the UH-60A, but that a correlation does exist between

cyclic inceptor rate and hub moment.
2The HelMEE IV experiments compared a breakout and gradient cue to a stick shaker and found the breakout

and gradient to be superior. A stick shaker was also evaluated briey in the OH-58D experiments and pilot comments

again indicated a preference for the breakout and gradient.
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pilot relaxed his input against the upper gradient.
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Figure 2.4: Tactile Cueing Force for Main Rotor Torque as a Function of
Collective Stick Position

The cue used for the blade stall limit in the UH-60A experiments was a stick shaker at the
blade stall limit. Using the stick shaker cue for blade stall allowed pilots to distinguish between
the main rotor torque and blade stall cues when both were used.

For cueing of hub moment exceedances on the cyclic inceptor, increased stick damping rather
than a stick force was used as a cue. The increased damping cue was selected because hub moment
corresponds more closely to stick rate than to stick position. Thus, it is appropriate to cue the
pilot to limit stick rate rather than stick position.

Computing Inceptor Limit Positions

As discussed above, PNNs using the inverse architecture directly estimate the moving limit position
that is sent to the force feel system. Forward architecture PNNs estimate a limit exceedance which
must then be used to compute an appropriate limit position. In the case of main rotor torque this
limit position is computed as

�clim = �c �KQ(Predicted Torque� Torque Limit) (2:1)

where �clim is the stick limit position, and �c is the current stick position. The gradient KQ

represents the collective stick displacement corresponding to a unit change in torque. This approach
is based on the assumption that torque can be modeled locally as a linear function of stick position
and that the value of KQ, which de�nes the slope of the linear relationship, can be found. The
approach used to determine KQ in the current work has been to use linear regression in o�-line
evaluation to estimate the desired slope. The initial estimate was then tuned based on pilot feedback
in preliminary system evaluation. A constant value ofKQ determined in this manner has been found
adequate in the experiments conducted thus far, but for some highly nonlinear control systems a
means of on-line adaptation might be required.

Barron Associates, Inc. 6
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Inceptor limit positions for the blade stall and hub moment cues were computed in similar
fashion.

3 Bias Correction for Online Adaptation

In the �rst UH-60A experiments with neural network limit avoidance cueing, it was found that
ight conditions not seen in training could lead to a bias in the PNN estimate. A bias correction
was applied which used prior PNN output errors to estimate the current output error. In the
inverse con�guration the output error of the PNN in the cueing con�guration is not known even
after a time delay, so the time delayed error of the PNN output in the synthesis con�guration was
used to approximate the error in the cueing con�guration. Fig. 3.5 shows how the bias correction
was applied to torque cueing with the inverse PNN architecture.

Inverse 
PNN

Inverse 
PNN

∆

∆

Σ
Current Torque

Current States

Current Stick
Position

Current States

Torque Limit
Σ

+

–

+

–

Final 
Estimate

Bias 
Correction

∆ represents a delay equal to the prediction horizon

LPF

PNN Estimate of 
Soft-Stop Location

PNN Estimate 
of Actual (Past) 
Stick Position

Delayed Stick Position

Figure 3.5: Bias Correction Applied to Inverse PNN Architecture

The bias correction applied to the inverse architecture was found to improve cueing system
performance, but the inability to apply a bias correction based on true prior error was viewed as a
drawback to the inverse PNN architecture. For the forward PNN architecture, a time delayed PNN
error can be computed provided the limited parameter of interest is observable. Fig. 3.6 shows the
application of the bias correction for torque cueing with the forward PNN architecture:
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∆

PNN Estimate of
Future Torque

Σ Filter
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Figure 3.6: Bias Correction Applied to a Forward PNN for Torque Prediction
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This bias correction approach was used in the OH-58D experiments and the subset of UH-60A
experiments that employed the forward PNN architecture.

4 OH-58D Piloted Simulation Experiments

Piloted simulation experiments using a �xed based OH-58D simulator were conducted at Bell
Helicopter Textron, Inc in Fort Worth, TX. In the �rst phase of the work data were recorded
for approximately 100 maneuvers of various types using two pilots. These data were used to
synthesize PNNs which comprised the core of the tactile cueing software. The experiments were
initially intended to consider cueing for two limits (main rotor torque and engine torque) and cueing
software was developed for both limits. Due to unexpectedly shortened simulation time, however, it
was not possible to evaluate the performance of the cueing system for engine torque. The discussion
in this paper is thus limited to main rotor torque cueing experiments, which, though also shortened
by technical di�culties with the BHTI simulation, did show promising results.

4.1 PNN Synthesis

Because the authors believe the forward PNN architecture o�ers certain conceptual advantages, as
discussed above, initial network synthesis was done using the forward architecture. Networks were
created using prediction horizons of both 0.25 and 0.5 sec. (Networks using a prediction horizon of
0.25 sec. were found to perform signi�cantly better than those using a 0.5 sec. prediction horizon
in o�-line evaluation.) Figs. 4.7 and 4.8 show truth and model output for the 0.25 and 0.5 sec.
prediction horizon networks, respectively.
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Figure 4.7: OH-58D Main Rotor Torque PNN Output (0.25 sec. Prediction Horizon)
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Figure 4.8: OH-58D Main Rotor Torque PNN Output (0.25 sec. Prediction Horizon)

Because of the success using the inverse architecture in prior research, the authors also syn-
thesized a PNN using the inverse architecture and a prediction horizon of 0.5 sec. This network
was synthesized and evaluated with the same databases used for the forward architecture PNN.
Performance of the inverse model was compared to that of the forward model in terms of the
ability of each network to accurately predict whether or not a limit exceedance would occur.3 It
was found that the inverse model incorrectly predicted whether a limit exceedance would occur
approximately three times more frequently than the forward network. As discussed in Section 2.2,
the authors believe that while the inverse architecture may be appropriate for single axis tasks, the
forward architecture is better suited to predicting in multi-axis tasks. The inferior performance of
the inverse PNN in this context was therefore not unexpected.

It was decided that forward architecture PNNs with prediction horizons of both 0.25 sec. and
0.5 sec. would be used for the piloted evaluation. The network with 0.5 sec. prediction horizon
was retained for piloted evaluation despite its comparatively poor performance in o�-line evalu-
ation because this prediction horizon worked well in prior research. As discussed previously, the
critical measure of the cueing system is pilot-in-the-loop performance, and this can be signi�cantly
inuenced by factors other than o�-line network performance.

4.2 Test Con�gurations and Tasks

Pilots were given the opportunity to y the system with numerous con�gurations and for a variety
of tasks in a brief preliminary evaluation. Based on feedback from this preliminary evaluation, the
team decided to limit the experiment to three maneuver types (bobup, bob-down, and slalom), a

3A comparison between the performance of the two networks in terms of a more standard metric such as normalized

RMS error is not possible because, as discussed above, the true output value for the inverse network in the cueing

con�guration is not known.
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single heavy weight (5,500 lb.), main rotor torque cueing only, and the following cueing system
con�gurations:

1. Force breakout cue using 0.25 sec. prediction horizon PNN with bias correction

2. Force breakout cue on current torque (see Fig. 2.4)

3. Shaker cue on current torque

4. No cue

4.3 Piloted Evaluation

The �rst pilot to evaluate the system was Mr. Jim Lindsey who ew the system using con�gurations
1, 2, and 4 listed above (soft stop with prediction, soft stop based on current torque, and no cue,
respectively). When a cue was used, Mr. Lindsey was unaware of which cueing con�guration was
in use. Mr. Lindsey reported that the soft stop with prediction was the preferred con�guration.
He found the stop to be better de�ned with the prediction, and reported a slight piloted-induced
oscillation (PIO) when prediction was omitted. He also found that the cue noticeably reduced pilot
workload and allowed him to check the cockpit gauges less frequently.

Subsequent to the evaluation by Mr. Lindsey, the authors analyzed the data from the bobup
maneuvers; summary statistics are shown in Table 4.1. While su�cient data could not be collected
to make detailed conclusions, the indications con�rmed the results of the NASA/Army VMS ex-
periments, i.e., the cue with prediction allowed the pilot to perform the maneuver more quickly and
with smaller torque exceedances as measured by both maximum and integrated torque exceedances.

Table 4.1: Performance on Bobup Maneuvers during First Day of
OH-58D Experiments (Pilot: Mr. Lindsey)

Cueing Configuration (Average) Maneuver
Time (Sec.)

(Average) Maximum
Torque Exceedance

(Average) Integrated
Torque Exceedance

No Cue 9.1 2.2% 6536

Cue on Current Torque 11.0 1.6% 3139

Cue on Predicted Torque 8.9 1.5% 1757

On December 11, BHTI pilot Jim McCollough and Army pilot Steve Kihara arrived for further
evaluations. Mr. McCollough spent 30-40 min. in the simulator and had signi�cant complaints
about the lags in the visual system, the unrealistic lateral-directional dynamics, and the lack of
adequate terrain features for visual reference in the bobup maneuver. He also found that he could
easily complete the slalom requirements with maximum torques as low as 95 percent and, therefore,
was unable to evaluate the system.

The second pilot to evaluate the system was Mr. Steve Kihara. Though insu�cient time pre-
vented data recording of maneuvers own by Mr. Kihara, he was able to compare three approaches
and provide subjective comments. He reported that the cueing system with prediction provided
su�cient advance warning to prevent over-torques during aggressive collective inputs. He preferred

Barron Associates, Inc. 10
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the soft stop con�guration to a stick shaker, and felt that the soft stop would work well in a real
environment.

4.4 Results of OH-58D Experiments

The OH-58D simulation experiments successfully demonstrated tactile cueing for multiple ma-
neuvers. They also demonstrated the use of the forward PNN architecture in a predictive limit
avoidance cueing system and demonstrated the use of such a system for a second type of helicopter.

5 UH-60A Piloted Simulation Experiments at NASA Ames

The HelMEE V experiments were conducted by Mr. Whalley with support from Barron Associates.
These experiments continued the HelMEE series of UH-60A piloted simulation studies in the VMS
facility and provided an in depth study of cues for multiple limits evaluated for a variety of ma-
neuvers. Cueing was provided for the main rotor torque limit, the blade stall limit, and the hub
moment or mast bending limit. To the authors' knowledge, these were the �rst experiments to
provide tactile cueing for multiple limits, and the �rst to provide cues on both the collective and
cyclic inceptors. Also, the cues were demonstrated over a broader range of ight conditions than
in previous experiments.

5.1 Facility Description

The HelMEE V investigation was conducted using the six-degree-of-freedom Vertical Motion Sim-
ulator (VMS) at the NASA Ames Research Center. The VMS is unique among ight simulators
in its large range of motion. This large motion capability provides cues to the pilot that are
important to the study of handling qualities. The speci�c simulator con�guration used for the
experiments included a single pilot cockpit with standard helicopter controls and a three window
computer generated imagery display. The instrument panel was con�gured to represent a UH-60A.
The heads-up-display (HUD) included: a torque meter; a radar altitude thermometer; a horizon
bar; a heading tape; a side-slip ball; and digital readouts of torque, load factor, airspeed, and radar
altitude.

5.2 Comparison of PNNs to Alternative Prediction Approaches

An important question raised in previous experiments was whether nonlinear models perform better
than linear models for predicting limit exceedances. Though no comparison was made between the
performance of linear and nonlinear models during piloted evaluations, it was possible to post-
process data gathered during the experiments to allow a statistical comparison of the prediction
accuracy of nonlinear and linear models. That is, data recorded during piloted experiments were
used to make an o�-line comparison of the performance of alternative prediction techniques. The
authors sought to perform the comparison in a manner that would favor neither the linear nor the
nonlinear model. The linear models used for the comparison were thus constructed using the same
input set as the nonlinear models to which they were compared, and the coe�cients of the linear
models were optimized using the same database used to create the nonlinear models. The current
value of the parameter of interest was also compared as a possible predictor as this may be a good

Barron Associates, Inc. 11
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predictor of a signal that is changing slowly relative to the prediction horizon. All predictors were
compared with and without bias correction.

The prediction models used in the research have been created for the purpose of providing
interpolation within the range of conditions seen in synthesis. The intent of the authors is for
models to be synthesized using data encompassing the range of conditions for which they will be
evaluated. Because the data available to synthesize the networks were limited in the number and
scope of maneuvers represented, it was important in assessing network performance to insure that
the PNNs were interrogated in regions represented in their synthesis databases. Two approaches
were used to analyze the input data ranges. One approach considered the ranges of individual
input parameters (the evaluation range allowed was typically �� 2�), while the second involved a
simple multidimensional clustering analysis.[4] Both approaches were used to restrict input ranges
considered in the PNN performance analysis.

In considering the comparison of model performance presented here it is important to recall that
this is an o�-line comparison. The authors believe that the statistical performance of predictors
in o�-line evaluation is an important factor inuencing cueing system performance, but it is not
the only factor inuencing pilot-in-the-loop performance, and o�-line evaluation is not intended to
eliminate the need for piloted comparisons.

Main Rotor Torque

Main rotor prediction PNNs were synthesized with prediction horizons of 11 and 22 samples, cor-
responding to the prediction horizons successfully used in prior OH-58D and UH-60A work. In
preliminary evaluation, pilots preferred the network with the longer prediction horizon because of
the greater lead time it provided, despite the better o�-line performance of the network with the
shorter horizon and this horizon was adopted for the �nal piloted evaluation.

Table 5.2 shows the performance of the three predictors considered (the PNN, linear model, and
current torque). The performance of each predictor is shown with and without bias correction.4

The results shown in the table are based on 203 recorded maneuvers. RMS errors were computed
separately for each maneuver and averaged to yield the results shown. Also shown in the table are
the bias-correction coe�cients that (of the three sets evaluated) yielded the best performance for
each predictor.

4Three di�erent sets of bias �lter coe�cients were used: �1 = 0:2, �2 = 0:8; �1 = 0:1, �2 = 0:9; and �1 = 0:02,

�2 = 0:98. Results reported are in all cases those for the set of coe�cients which yielded the best performance. No

further tuning was attempted to optimize performance for any of the bias-corrected predictors.
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Table 5.2: Comparison of Three Approaches for Predicting
UH-60A Main Rotor Torque (units: % of nominal
limit))

PNN PNN +
Bias

Linear
Model

Linear +
Bias

Current
Torque

Current +
Bias

Average RMS Error 1.6378 1.4077 3.0148 1.7140 2.6781 3.1418

Best Bias Coefficients - 0.1, 0.9 - 0.2, 0.8 - 0.02, 0.98

In the absence of bias correction, the performance of the nonlinear model is far superior to that
of the other predictors. With bias correction, the gap between the linear and nonlinear models is
narrowed signi�cantly, but the nonlinear model still signi�cantly outperforms the linear model.

Blade Stall

Table 5.3 compares the performance of a PNN model, a linear model, and the true current value
of ERITS as predictors of future ERITS. Again the linear model used in the comparison employed
the same inputs as the PNN and was optimized with the same database used for PNN synthesis.

Table 5.3: Comparison of Three Approaches to Predicting
UH-60A ERITS

PNN PNN +
Bias

Linear
Model

Linear +
Bias

Current
ERITS

Current +
Bias

Average RMS Error 17.55 16.42 21.84 20.80 17.51 18.96

Best Bias Coefficients - 0.02, 0.98 - 0.2, 0.8 - 0.02, 0.98

It is unclear whether the true value of ERITS may be reasonably obtained for a production
rotorcraft. In synthesizing the PNNs, the authors treated this parameter as unobservable and did
not allow it as a network input, though the true value was used in performing the bias correction.
The results show that the nonlinear ERITS model performs signi�cantly better than the linear
model, both with and without bias correction. The current value of ERITS as a predictor performs
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slightly better than the nonlinear model, but the current value of ERITS can be used as a predictor
only if ERITS is observable, and in this case current ERITS could reasonably used as an input to
both linear and nonlinear models, improving their performance. Even without ERITS used as a
model input, however, the PNN with bias correction is the best predictor.

Longitudinal Hub Moment

The longitudinal hub-moment (TMH) PNN used in the �nal experiments was synthesized using a
data set containing only a single type of maneuver, and all maneuvers in the database were own
by a single non-rated engineering pilot. When this network was initially evaluated in piloted simu-
lation, its performance was deemed adequate, but it was not found to o�er signi�cant improvement
over previous linear models. Subsequent models, synthesized when more data became available,
yielded improved o�-line performance but were not incorporated into the on-line system. Analysis
performed after the experiments indicated that linear models would have performed as well as or
better than the nonlinear model used in piloted evaluations. The authors believe, however, that
with data from a greater range of maneuvers available for synthesis, nonlinear modeling techniques
would likely show signi�cant bene�ts for the hub moment parameter.

5.3 Results of Piloted Evaluation of the Cueing System

Piloted evaluation of the cueing system involved three standard maneuvers (a bobup, an accel-
eration/deceleration, and a maximum performance turn) and a more complex search and rescue
mission task. Bene�ts from cueing were realized for all maneuvers, and improvements were seen
with regard to exceedances of each limit considered.

The blade stall limit was encountered primarily in the maximum performance turn task and the
search and rescue mission. In both cases the HUD cue alone reduced limit exceedances, the force
cue alone further reduced exceedances, and the combined HUD and force cues yielded the greatest
performance improvements.

The longitudinal hub moment limit was encountered primarily in the acceleration/deceleration
maneuver and in the search and rescue mission. The HUD and tactile cues alone yielded nearly
the same level of improvement, though the HUD-only cue was slightly better. Here, the combined
HUD and tactile cue yielded worse performance than either cue alone. The results indicate that
cueing for the hub moment limit is bene�cial, but further research will be required to conclusively
determine the best type of cue to be used.

Main rotor exceedances were tracked for all three tasks and the search and rescue mission. HUD-
only cueing yielded little reduction in rotor torque exceedances for the maximum performance turn,
and actually caused increased exceedances for the acceleration/deceleration maneuver and bobup.
HUD-only cueing performed marginally better than force cueing for the search and rescue mission.
Force cueing alone was bene�cial in all cases, but the combined HUD and force cue yielded the
greatest performance improvements on this class of maneuvers.

Quantitative improvements in the form of reduced limit exceedances are a convincing demon-
stration of the e�ectiveness of cueing for limit avoidance. If such a system is to be successful in eet
rotorcraft, however, gaining pilot acceptance will also be critical. The following sections present
handling qualities rating and comments from pilots who evaluated the cueing system.
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Handling Qualities Ratings

Figs. 5.9-5.11 show handling qualities ratings for the various cueing con�gurations for bobup, ac-
celeration/deceleration, and maximum performance turn, respectively (the center dot indicates the
average rating and the vertical bar indicates a 95% con�dence interval). For all three maneuvers,
pilots gave better handling qualities ratings to the force cue than to the HUD cue alone, though
the combined HUD and force cue received the best handling qualities rating for all maneuvers.
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Figure 5.9: Handling Qualities Ratings for Bobup Maneuver
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Figure 5.10: Handling Qualities Ratings for Acceleration/Deceleration Maneuver
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Figure 5.11: Handling Qualities Ratings for Maximum Performance Turn
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Representative pilot comments for each maneuver/cueing con�guration follow.

Pilot Comments: Bobup Maneuver

1. Baseline con�guration (no cueing)

� Only awareness was by looking at the torque gauge. Di�cult to get the exceedance
factor (Pilot A).

� Can't incorporate the gauge into a continuous control task (Pilot C).

� Having to look back in the cockpit is more di�cult (Pilot E).

� There is some mental workload now associated with watching the gauge. Harder than
with force cueing (Pilot F).

2. HUD Cues Only

� Noticed that you needed to split attention between the cones and the torque...Without
the force cue you had to pay attention to what the torque tape was doing (Pilot A).

� Could incorporate the HUD cues but could not be as aggressive (Pilot A).

� Cannot use the whole envelope. Just not aware where the upper torque limit is (Pilot
A).

� Good sense of exceedances as long as you are looking at it (Pilot B).

� Not able to con�dently use the available torque (Pilot C).

� Not as much awareness of exceedances (Pilot D).

� No confusion on needed response (Pilot D).

3. Tactile Cues Only

� Vague awareness of exceedances. Having it visually available give you a better idea
(Pilot A).

� No confusion in required control input (Pilot A).

� No need to refer to the panel (Pilot B).

� Much more comfortable. More opportunity to concentrate on longitudinal performance.
(Pilot B).

� No confusion over required control input. Feedback is directly to the controlling ap-
pendage (Pilot C).

� Can't see any way this could interfere with operation in cockpit (Pilot C).

� Was con�dent in using the system (Pilot D).

� Able to con�dently use the system (Pilot F).

� Con�dent in the use of all the envelope (Pilot H).

4. Tactile and HUD Cues
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� Able to perceive the collective cue. Didn't notice the visual cues for the limits (Pilot A).

� Able to con�dently use the envelope without exceedances (Pilot A).

� Good awareness of the tactile cueing. Fair awareness of the symbology (Pilot B).

� Cue was easy to perceive and incorporate into the control strategy (Pilot C).

� Having information from both the HUD and the tactile cue allowed him to focus entirely
outside the aircraft (Pilot G).

� All the info you need is there. Can't think of any way to improve it (Pilot G).

Pilot Comments: Acceleration/Deceleration

1. Baseline Con�guration (no cueing)

� Not aware of exceedances. Perhaps a glance at the gauge might tell you about torque
(Pilot A).

� No idea of where the hub moment is (Pilot A).

� Completely unaware of hub moment exceedances (Pilot C).

� Not con�dently able to utilize all the available envelope.

� Greatly reduced ability to meet performance standards, particularly hub moment (Pilot
D).

� Having to stare at torque gauge is a problem.

2. HUD Cues Only

� Moment cue is kind of an on/o� cue. No proximity info (Pilot F).

� Flash of hub symbol was not enough to cue him. He was aware of it bit it wasn't enough
to keep him within the limit (Pilot G).

� Hub cue is a bit ambiguous. the icker of the symbol does not contain enough info (Pilot
G).

3. Tactile Cues Only

� Cyclic cue was somewhat vague, might be confused with force trim (Pilot A).

� Going from no cues to cues really is a signi�cant thing for everybody to look at. It really
emphasizes how much the tactile cueing helps (Pilot D).

� Getting both the torque and hub limit cueing (Pilot D).

� Not feeling the cyclic cueing (Pilot E).

� No idea what he's doing to cause hub moment exceedances.

� Torque cue is easy to perceive. Could occasionally feel the cyclic cue but it is subtle
(Pilot F).

� No confusion in response to the cue (Pilot G).

4. Tactile and HUD Cues
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� The perception of the collective cue is predominant as compared to the hub moment cue
(Pilot A).

� Able to incorporate the collective cue but not in the cyclic. Not increasing aggressiveness
to encounter the cue (Pilot F).

� Hub force cueing is very light (Pilot G).

� Reduced aggressiveness in response to feeling the cue. Still not really incorporated into
his control strategy though (Pilot G).

Pilot Comments: Maximum Performance Turn

1. Baseline Con�guration (no cueing)

� Able to acquire the torque value somewhat but not the stall.

� Limiting factor was not knowing where the stall limit was so he had to be conservative
to avoid it (Pilot A).

� Stall cueing is missed the most (Pilot B).

� Performance was consistently bad (Pilot D).

� Not able to con�dently use the envelope (Pilot D).

� Aggressiveness limited by lack of information (Pilot G).

� No con�dence whatsoever (Pilot H).

2. HUD Cues Only

� Could incorporate limit cues by backing o� on the stick in response to the HUD cues
(Pilot A).

� Would have been better with the force cues (Pilot A).

� Hard to �nd the edge of the envelope (Pilot A).

� Not satisfactory without improvement, but pretty straightforward (Pilot B).

� Con�dence level has dropped in ability to use the envelope (Pilot D).

� Increased physical and mental workload (Pilot D).

� Able to incorporate the limit cues into his strategy (Pilot G).

3. Tactile Cues Only

� Very aware of limit exceedances. More precise in the use of controls. Using the cues in
his control strategy by nibbling on the stall cue (Pilot B).

� Very aware of limits (Pilot C).

� Able to use the envelope con�dently (Pilot C).

� Able to incorporate the limit cues. Worked very well (Pilot D).

� Workload has gone down from the HUD only con�guration (Pilot F).

4. Tactile and HUD Cues
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� Good indication of exceedance magnitude with the HUD plus stick (Pilot A).

� Easy to perceive the cues (Pilot A).

� Immediately aware of the limit exceedances (Pilot C).

� Air vehicle performance is now the limiting factor (Pilot C).

� Awareness of exceedances is very obvious. Ability to perceive exceedances is high (Pilot
D).

� Very con�dent that he can y close to the envelope (Pilot F).

� Having the HUD adds to the info on torque if he isn't feeling anything (Pilot F).

6 Conclusions

The e�ectiveness of predictive cueing for limit avoidance using neural networks was demonstrated
in multiple piloted simulation experiments. Pilot-in-the-loop experiments of the UH-60A initially
demonstrated cueing of a single limit (main rotor torque) for a single axis bobup task using a PNN
with an \inverse" architecture. Subsequent experiments with the OH-58D demonstrated cueing
for a single limit (main rotor torque) for multiple maneuvers using a \forward architecture" PNN.
A second set of UH-60A experiments demonstrated cueing of multiple limits during a variety of
maneuvers.

Quantitative analysis of maneuver performance demonstrated the e�ectiveness of the cueing
system to allow pilots to achieve maximum maneuver performance with minimal limit exceedances.
Handling qualities evaluations by pilots also showed the cueing system to be bene�cial, and pilot
comments were generally positive. Pilots felt more con�dent in their ability to achieve maximum
aircraft performance because of increased awareness of the operational limits. Pilots also reported
reduced workload as a result of the limit avoidance cueing.
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